sns_toolbox.backends

Simulation backends for synthetic nervous system networks. Each of these are python-based, and are constructed using a Network. They can then be run for a step, with the inputs being a vector of neural states and applied currents and the output being the next step of neural states.

Classes

Backend

SNS_Numpy

SNS_Torch

SNS_Sparse

SNS_Iterative

Module Contents

class sns_toolbox.backends.Backend(params: Dict)
abstract forward(x=None)
set_params(params: Dict) None
__call__(x=None)
abstract reset()
class sns_toolbox.backends.SNS_Numpy(params: Dict)

Bases: Backend

forward(x=None)
reset()
class sns_toolbox.backends.SNS_Torch(params: Dict)

Bases: Backend

forward(x=None)
reset()
class sns_toolbox.backends.SNS_Sparse(params: Dict)

Bases: Backend

forward(x=None)
reset()
class sns_toolbox.backends.SNS_Iterative(params: Dict)

Bases: Backend

set_params(params: Dict) None
forward(x=None)
reset()